NMR Spectra of CH₃(D₃)COOH and CF₃COOH in Nematic Liquid Crystals

D. Pumpernik and A. Ažman

Chemical Institute Boris Kidrič, University of Ljubljana, Ljubljana, Yugoslavia

(Z. Naturforsch. 28 a, 1746 [1973]; received 30 September 1973)

NMR spectra of oriented $CH_3(D_3)COOH$, CF_3COOH in various liquid crystals are given. The quadrupole coupling constant of CD_3COOH is evaluated.

In this note we report H, F and D spectra of $\mathrm{CH}_3(\mathrm{D}_3)\mathrm{COOH}$ and $\mathrm{CF}_3\mathrm{COOH}$ in various liquid crystals. The results (Table 1) include: the direct coupling constants (D), splitting of the doublet in the deuterium spectra (A), the z components of the S matrix and the calculated quadrupole coupling constants. Due to the (-O-H) proton exchange there is no coupling between this proton and the CH_3 or CF_3 group. The symmetry of all these systems is therefore C_3 . The direct coupling constants for the F atom in $\mathrm{CF}_3\mathrm{COOH}$ are the same in Merck V and in MBBA (N-(p-Methoxy-benzyliden)-p-n-butylanil). For $\mathrm{CH}_3\mathrm{COOH}$ the values of D are

roughly the same in Merck V, IV and HOAB (4-4'di-n-heptyloxyazoxy benzene) but differ considerably from the value in MBBA. The calculated quadrupole coupling constants 1 (the geometries of the compounds from Ref. 2) have almost the same value. Therefore there is no specific interaction of CH₃COOH with the liquid crystals and the large differences of D reflect the influence of the dissolved species on the liquid crystals orderings. The addition of CF₃COOH to Merck V and of MBBA or CH₃COOH to MBBA, disturbes the ordering of the liquid crystals to a much greater extent than the addition of CH₃COOH to Merck V, IV or HOAB. The calculated value of the quadrupole coupling constant of CD₃COOH falls in the range of quadrupole coupling constants observed so far 1.

The spectra were recorded with a JEOL PS-100 instrument. The temperatures of the system were 18° for Merck and MBBA liquid crystals and 94° for HOAB.

Acknowledgements

This work was supported by Boris Kidrič Fund.

System	Liquid crystal	D (Hz)	△ (kHz)	S_{zz}	$e^2 q Q/h \ ({ m kHz})$
CF ₃ COOH	Merck V	271		$1.23 \cdot 10^{-2}$	
	MBBA	270		$1.22 \cdot 10^{-2}$	
CH₃COOH	Merck V	1550	11.4	$1.38 \cdot 10^{-1}$	178
	Merck IV	1850		$1.64 \cdot 10^{-1}$	
	HOAB	1550		$1.38 \cdot 10^{-1}$	
	MBBA	190	1.5	$1.69 \cdot 10^{-2}$	185

Table 1. Direct coupling constants D, splittings in the deuterium spectra Δ , z components of the S matrix, and quadrupole coupling constants $e^2 \ Q \ / h$.

Reprint requests to Dr. A. Ažman, Dept. of Chemistry University of Ljubljana, Murnikova 6 — P.O.B. 537, *J-61001 Ljubljana*, Jugoslawien.

- ¹ F. S. Millet and B. P. Dailey, J. Chem. Phys. **56**, 3249 [1972].
- ² Interatomic Distances Supplement No. 18, ed. L. E. Sutton, Chemical Society 1965.

BERICHTIGUNG

Zu H. Schirmer und I. Stober, "Zur näherungsweisen Berechnung der elektrischen Leitfähigkeit eines Plasmas", Zeitschrift für Naturforschung **28 a,** 1454–1458 [1973]. Auf Seite 1457 sind die Abb. 2 und 3 vertauscht.